On the formation of terrestrial planets in hot–Jupiter systems
نویسندگان
چکیده
Context. There are numerous extrasolar giant planets which orbit close to their central stars. These ‘hot-Jupiters’ probably formed in the outer, cooler regions of their protoplanetary disks, and migrated inward to ∼ 0.1 AU. Since these giant planets must have migrated through their inner systems at an early time, it is uncertain whether they could have formed or retained terrestrial planets. Aims. We present a series of calculations aimed at examining how an inner system of planetesimals/protoplanets, undergoing terrestrial planet formation, evolves under the influence of a giant planet undergoing inward type II migration through the region bounded between 5 – 0.1 AU. Methods. We have previously simulated the effect of gas giant planet migration on an inner system protoplanet/planetesimal disk using a Nbody code which included gas drag and a prescribed migration rate. We update our calculations here with an improved model that incorporates a viscously evolving gas disk, annular gap and inner–cavity formation due to the gravitational field of the giant planet, and self–consistent evolution of the giant’s orbit. Results. We find that & 60% of the solids disk survives by being scattered by the giant planet into external orbits. Planetesimals are scattered outward almost as efficiently as protoplanets, resulting in the regeneration of a solids disk where dynamical friction is strong and terrestrial planet formation is able to resume. A simulation that was extended for a few Myr after the migration of the giant planet halted at 0.1 AU, resulted in an apparently stable planet of ∼ 2 m⊕ forming in the habitable zone. Migration–induced mixing of volatile–rich material from beyond the ‘snowline’ into the inner disk regions means that terrestrial planets that form there are likely to be water–rich. Conclusions. We predict that hot–Jupiter systems are likely to harbor water–abundant terrestrial planets in their habitable zones. These planets may be detected by future planet search missions.
منابع مشابه
Can Terrestrial Planets Form in Hot-Jupiter Systems?
Models of terrestrial planet formation in the presence of a migrating giant planet have challenged the notion that hot-Jupiter systems lack terrestrial planets. We briefly review this issue and suggest that hot-Jupiter systems should be prime targets for future observational missions designed to detect Earth-sized and potentially habitable worlds.
متن کاملThe Formation and Habitability of Terrestrial Planets in the Presence of Hot Jupiters
‘Hot jupiters,’ giant planets with orbits very close to their parent stars, are thought to form farther away and migrate inward via interactions with a massive gas disk. If a giant planet forms and migrates quickly, the planetesimal population has time to re-generate in the lifetime of the disk and terrestrial planets may form (Armitage 2003). We present results of simulations of terrestrial pl...
متن کاملThe effect of type I migration on the formation of terrestrial planets in hot-Jupiter systems
Context. Our previous models of a giant planet migrating through an inner protoplanet/planetesimal disk find that the giant shepherds a portion of the material it encounters into interior orbits, whilst scattering the rest into external orbits. Scattering tends to dominate, leaving behind abundant material that can accrete into terrestrial planets. Aims. We add to the possible realism of our mo...
متن کاملTerrestrial Planet Formation in Extra-Solar Planetary Systems
Terrestrial planets form in a series of dynamical steps from the solid component of circumstellar disks. First, km-sized planetesimals form likely via a combination of sticky collisions, turbulent concentration of solids, and gravitational collapse from micron-sized dust grains in the thin disk midplane. Second, planetesimals coalesce to form Moonto Mars-sized protoplanets, also called “planeta...
متن کاملSolar System Formation Deduced from Observations of Matter
Aspects of our Solar System’s formation are deduced from observations of the chemical nature of matter. Massive cores are indicative of terrestrial-planet-composition-similarity to enstatite chondrite meteorites, whose highly-reduced state of oxidation may be thermodynamically stable in solar matter only at elevated temperatures and pressures. Consistent with the formation of Earth as envisione...
متن کامل